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Abstract— Nonlinear behavior and disturbance sensitivity of 
the pH processes causes them to be known as an appropriate test 
bench for advanced controllers. Because of special behavior and 
varying parameters of pH processes, Multiple Model Predictive 
Controllers (MMPC) outperform other controllers from both    
regulation and disturbance rejection points of views. Two new 
supervisory methods based on prediction error and fuzzy 
weighting for MMPC are presented. Better regulation in special 
condition and most excellent disturbance rejection in comparison 
to other MMPC methods are achieved.  

Index Terms — pH Process, Multiple Model Predictive 
Control, Prediction Error, Fuzzy Weighting. 

I. INTRODUCTION 
pH control plays an important  role in chemical processes 

such as neutralization of wastewater, biotechnological 
processes and electrochemistry. Wastewater neutralization 
processes present a very challenging control problem because 
of two major difficulties. First neutralization process is highly 
nonlinear, and second only a small portion of titrating reagent 
can result in a change up to one pH.  A single linear model 
cannot   describe these behaviors in the whole operating range. 
The overall system can be modeled as a set of linear systems. 
Each single model is valid in a narrow region around one of the 
operating points. Sensitivity to disturbance is one of the most 
important specifications of pH processes. Disturbances highly 
affect model parameters in pH process thus robust control 
methods are considered.   

Model predictive controller (MPC) is well known for its 
robustness and has a rich theoretical background. Dynamic 
matrix control is the most popular MPC algorithm used in the 
chemical process industries [9]. Also it is easy to implement 
because of available linear optimization methods and low cost 
computations. On the other hand, multiple model methods are 
recently applied to a broad class of control schemes, such as 
multiple model adaptive control [10, 11], multiple model fuzzy 
control [8] and multiple model predictive control [7, 6, 5, 4, 3]. 
Multiple model method has been used for disturbance rejection 
as in [12]. 

Each multiple-model control scheme has 3 parts. The first 
Two other parts are model\controller bank and decision making 
or supervisory unit. There are two types of supervision known 

as switching and weighting. The last part is control design 
method. Here, it is based on the model predictive control.  This 
paper tries to show the effect of supervisory in MMPC 
algorithm applied to a pH neutralization process. The control 
objectives are to force the system to track different pH 
setpoints, and keep the pH in neutrality in the presence of 
disturbances in buffer and acid inputs. 

This work continues with fundamental control design 
method. After that, switching and weighting multiple-model 
predictive control approaches explained. Immediately after 
that, pH neutralization plant and MMPC control strategies 
explained and simulation results for regulating and disturbance 
rejection presented. Finally, the paper is concluded in the last 
section. 

II. FUNDAMENTAL CONTROL DESIGN METHOD 
Model Predictive Control (MPC) is established as an 

important form of process control. Dynamic Matrix Control 
(DMC) [1] is a popular MPC algorithm which is used in many 
of chemical process industries. In DMC, quadratic performance 
objective function is minimized over a prediction horizon to 
compute the optimal controller output moves as a least square 
problem. In [2] easy-to-use and reliable tuning strategies for 
unconstrained SISO dynamic matrix control (DMC) are 
presented. The tuning strategy for set point tracking with 
minimal overshoot and modest manipulated input move sizes is 
considered. This method describes move suppression 
coefficient λ , from a first order plus dead time (FOPDT) 
model approximation of the process dynamics. λ  has a dual 
purpose effect on conditioning the system matrix before 
inversion and preventing from aggressive control action. It is 
often used as the main adjustable parameter to finely tune 
DMC to desirable performance. Past researches have focused 
mostly on the latter effect in the selection of λ  The DMC 
control law is given by: 

( ) 1
Δ T TA AU eI Aλ

−
= +  (1) 

where A  is the dynamic matrix, e  is the vector of 
predicted errors over the next P sampling instants,     prediction 
horizon, λ is the move suppression coefficient, and UΔ is the 
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manipulated input profile computed for the next M sampling 
instants, M is called the control horizon. TA A is referred as 
the system matrix. In [3] a step-by-step procedure for 
computing the DMC tuning parameters and calculation of λ  is 
derived assuming a user defined control horizon and given 
sampling time. 

III. MULTIPLE MODEL PREDICTIVE CONTROL 
 
When DMC applied to nonlinear plants its performance 

deteriorates. One approach to overcome this problem is, model 
the overall system by a set of linear models, each model is 
valid in a narrow region around an operating point. As 
illustrated in “Fig.1”, each model in the bank defines a new 
control problem. Insufficient number of models causes 
imprecise modeling while excessive number of models causes 
complexity in the supervision procedure and undesired 
overshoots. So the number of models is a very critical decision 
regarding appropriate closed loop performance. More details 
on the model bank are offered in [14]. After construction of 
model\controller bank the decision or supervisory unit should 
be designed. There are two types of supervision; switching 
supervisory and weighting supervisory, which are described in 
the sequel of this section. 

 
Fig. 1.  MMPC Strategy 

 

A. Switching Multiple Model Predictive Control (SMMPC)  
In switching supervisory of Multiple Model Predictive 

Control (SMMPC), in each cycle, based on rules of supervisor, 
the best controller is selected. There are two methods for 
SMMPC. 

The first is gain schedule method, [15], where the output of 
systems divided to various sections and for each region of 
output, model\controller of that region will be chosen. For 
example for 4.5 5.5pH< < the selected model\controller, is 
region of pH=5 model\ controller. 

 The second method is a new method described here. 
Supervisor gets the difference between predicted outputs of the 
models y and real output of the process, called the prediction 
error and calculates performance indexes, using (2): 

2 2

1

( ) ( )

, , 0,0 1

M
k

s s s
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In (2), s f ˆe y sy= − and according to “Fig .2”, ˆsy is the 

predicted output of ths  model, fy is the filtered output of the 
process, , , Mα β   are the free-design parameters, which are 
effective in the control system performance, and γ  is 
forgetting factor. The supervisor calculates minimum 
performance index from “(3)”: 

 

{ }min [1, ]ii
i PJ J= ∈  (3) 

 
P is the number of models. To limit hard switching speed, 

a hysteresis cycle gain h is used. The previous model will be 
changed if B AJ Jh< , Subscripts ‘ A ’ and ‘ B ’ point to the 
current active model and the current best model respectively. 

The blocks fH in “Fig.2” are high-pass filters which are 
necessary to discard biases of data for more details, see [14]. 
Using these filters is necessary in order to compare linear 
models outputs with the nonlinear process. 

fH fH

 
Fig. 2.  Prediction error based SMMPC. 

 

B. Weighting Multiple Model Predictive Control (WMMPC) 
In each cycle, SMMPC method chooses best 

model\controller for calculating control signal and controlling 
the process. Another method for calculating control signal is 
Weighting Multiple Model Predictive Control (WMMPC). In 
this method, as shown in “Fig.3”, all control signals produced 
by several controllers are weighted and normalized and then 
given to plant. For example for 3 model\controller the control 
signal calculated from (4): 

 
1 1 2 2 3 3U U w U w U w= + +   (4) 

where 1 2 3w w w 1+ + = and 1 2 3w , w , w 0≥  weighting 
gains. There are two methods for supervisory or decision 
making in WMMPC. In “[3]”, the final control output 
forwarded to the plant by interpolating between the individual 
controller outputs and defining some mathematical 
formulations. Fuzzy weighting is a new method that is 
suggested here for combination of signals by means of fuzzy 
membership functions. In this method a fuzzy membership 
function is designed based on system and model \controller 



behaviors and control objectives, as shown in “Fig. 3”. In high 
gain region, low weighting is specialized for high gain 
controller and high weighting for low gain controller, to 
contrast from overshoots and instabilities. Preserving desired 
performance, in low gain dynamic behavior region, high 
weighting is specialized for high speed controller and low 
weighting for low speed controller . 

1U

1
1 2 1 2

1 22h hU U U
h h h h

= +
+ +

2U 3U

1h
2h

1

 
Fig. 3.  Fuzzy membership function. 

IV. MULTIPLE MODEL PREDICTIVE CONTROL OF PH 
NEUTRALIZATION PROCESS 

There is an increasing attention to pH processes as a bench 
mark of new advanced control problems, because of strong 
nonlinear behavior of these processes. This paper tries to show 
effect of supervisory in MMPC to control a pH neutralization 
process. As shown in following, MMPC methods have ability 
to control pH in different reference points with different 
settling times of process. The control objective is to force the 
system to change its pH value, and keep it in neutrality in the 
presence of disturbance. 

A. System Description 
 
pH process has three reaction streams: 3HNO , NaOH , 

3NaHCO  and two output variables: liquid level h   and pH . 
Acid, base and buffer flow rates are known as aF , bF , 

bfF respectively. According to [15, 16], the overall model 
including the dynamical part in terms of state and output 
equations is described as “(5)” 

 
( ) ( ) ( )

( , ) 0

dx f x g x p x d
dt
c x y

= + +

=
  (5) 

Where a bx [h,  w , w ]= , a bu [ F ,F ]= , bfd  F= , 1 2c [ c ,c ]=

[ , ]Ty h pH= . From control view point, the process regarded 
as single-input bF  and single-output pH system, the buffer 
stream 3NaHCO and acid stream 3HNO  are considered as 
disturbances.  

“Fig .4” shows Titration curve of the typical solutions. “Fig 
.5” demonstrates the variations of static gain of the process 
versus the pH values. Highest static gain of the process 
occurred at pH=8.1 and lowest static gain in the range of pH of 
[3.5, 10] is 0.2 at pH=3.6. Thus, it results that the static gain of 
the process changes 14 times in the whole operating point. 
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Fig. 4. Titration curve .buffer=0.55 (solid), buffer =0.25 (dot) 
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Fig. 5. Static gain of pH process 

 
In order to testing applicability of control methods on real    

system, 20 second delay and uniform random noise with 
amplitude of 0.1, added to output of pH process.  

B. MMPC for pH Neutralization Process 
In this section, the proposed SISO MMPC algorithm is 

evaluated on pH neutralization process, regulating the desired 
set-point while rejecting the disturbances. The parameter 
tuning methods for MMPC controllers are mentioned in section 
2. Acid and buffer inputs act as immeasurable disturbances. 
For a pH control problem, it is essential that the volume of 
solution in the CSTR stays in a predefined value. Thus, a 
classical PI controller is designed to hold volume in predefined 
level, as shown in “Fig .6”. 

 
Fig. 6.  SISO MMPC Scheme. 

There are various methods distinguishing different   
regions, such as Self-Organizing Map (SOM) neural network 
[18] and gap metric method [19]. Here from experience as in 
[3], three regions models are picked out for describing entire 
behavior of pH process, as shown in “Table .1”. 



TABLE I.  FOPDT MODELS AND STATIC GAINS IN 3 REGIONS 

PH= 5 6 8 

Model 201.289
64.350 1

se
s

−

+  

200.356
65.445 1

se
s

−

+  

202.541
80.515 1

se
s

−

+  

Static 
Gain 1.2896 .3562 2.5411 

 
Constants of performance index of switching supervisor 

based on prediction error, was α β 1= = , 10M = , hysteresis 
constant 0.9h = and forgetting factor 0.9γ = .  In fuzzy 
weighting approach in WMMPC the membership functions 
selected as “Fig.7”. Membership functions are chosen in some 
way which combines the low speed controllers output in high 
speed dynamical region and high speed controllers output in 
low speed dynamical regions.  

 

  
Fig. 7. Fuzzy membership function for pH simulated process 

 
Various scenarios are performed to compare MMPC 

methods, in regulation at varying pH values and in disturbance 
rejection at neutrality i.e. pH=7. 

Scenario 1: controllers are compared from regulation point 
of view. This test involves 3 parts: small changes in the 
setpoint “Fig .8”, medium changes in setpoint “Fig.9”, and 
large changes in the setpoint “Fig .10”. In order to preventing 
from overshoot and increasing regulating speed, various 
settling times for setpoints have been choosed. Settling times 
for references input of pH 5=  ad pH 8=  because of 
sensitivity of plant in these regions considered, 600 second and 
for the other pH’s the considered settling time is 200 second. 
Hardest changes and overshoots in control effort are taken 
place in large changes of the setpoint as “Fig .11”. Maximum 
over shoot of 0.73% occurs when changing from 
pH 5 to pH 8= =  . In other scenarios the control signal 
changes are smaller. 

Scenario 2: In the second scenario, the acid stream flow 
rate is changed as a disturbance. This feed rate is changed from 
16.6 to 14.6 and 18.6. MMPC using gain scheduling method 
became unstable when acid stream decreasing with 
disturbance, as simulation results are shown in “Fig .12”. Acid 
stream increasing disturbance and disturbance rejection results 
shown in “Fig .13”. 

Scenario 3: In the third scenario, the buffer stream flow rate 
is changed as a disturbance. This feed rate is changed from 
0.55 to 0.25 and 1.35. Buffer stream decreasing disturbance 
unstablized all of controllers except prediction error based 
MMPC. The simulation results are shown in “Fig.14”. Buffer 
stream increasing disturbance and controllers behaviors shown 
in “Fig .15”.  

Sum of squares error for numerical comparison of different 
controllers executions in each scenario is picked up. The 
numerical results are shown in “Table .2”. 

 

C. Discussion 
In regulation of small changes in pH reference and 

disturbance rejection, MMPC with prediction error supervisor 
has best control behavior and minimum sum of square error. 
The similar results for large and medium changes obtained for 
MMPC with fuzzy weighting supervisor. Repetitive 
experiments shows unpredictability of performance of the 
previous MMPC methods and it may be worse or better than 
what is proposed in this paper. However, the presented 
methods do not have such negative aspect. 

V. CONCLUSION 
In this paper two innovative supervisory methods for 

multiple model dynamic matrix control are presented with 
detail. The controllers are selected, based on practical 
preliminary and numerical analysis shows that the MMPC with 
fuzzy weighting supervisor results in a better tracking 
performance for regulation for large changes in pH setpoint. 
MMPC with prediction error supervisor shows better 
disturbance rejection and regulation performances for small 
changes in pH reference in comparison with other multiple 
model predictive controls.  

It is obvious that the presented MMPC approaches 
outperform the conventional MPC, when pH crosses from or 
stays at given set point having the greatest gain and more 
specially form disturbance rejection view point. 
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Fig. 8.  MMPCs for short set point changes. Prediction error (dashed), Fuzzy 
weighting (solid), gain schedule (dot), conventional weighting (dash-dot) and 
set-point (big dash) 
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Fig. 9.  MMPCs for medium set point changes. Prediction error (dashed), 
Fuzzy weighting (solid), gain schedule (dot), conventional weighting (dash-
dot) and set-point (big dash) 
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Fig. 10. MMPCs for large set point changes. Prediction error (dashed), Fuzzy 
weighting (solid), gain schedule (dot), conventional weighting (dash-dot) and 
set-point (big dash) 
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Fig. 11.  MMPCs  control signal for large changes . Prediction error 
(dashed), Fuzzy weighting (solid), gain schedule (dot), conventional 
weighting (dash-dot) and set-point (big dash) 
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Fig. 12.  MMPCs for acid  decreasing disturbance rejection. Prediction error 
(dashed), Fuzzy weighting (solid), gain schedule (dot), conventional 
weighting (dash-dot) and set-point (big dash) 
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Fig. 13.  MMPCs for acid  increasing disturbance rejection. Prediction error 
(dashed), Fuzzy weighting (solid), gain schedule (dot), conventional 
weighting (dash-dot) and set-point (big dash) 
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Fig. 14.  MMPCs  for buffer decreasing disturbance .  Prediction error 

(dashed), Fuzzy weighting (solid), gain schedule (dot), conventional 
weighting (dash-dot) and set-point (big dash) 
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Fig. 15.  MMPCs  for buffer increasing disturbance . Prediction error 
(dashed), Fuzzy weighting (solid), gain schedule (dot), conventional 
weighting (dash-dot) and set-point (big dash) 
 
 

 

TABLE II.  SUM OF SQUARE ERROR 

 
    Prediction error  Gain scheduling  Fuzzy weighting Conventional weighting 

Small step 5.1680 10.9894 7.0758 5.7029 

Medium step 28.0871 39.8473 21.5036 28.2080 

Large step 42.8606 66.5466 30.7334 33.4920 

Acid disturbance 
( Decreasing ) 

14.0692 
 

Inf 
 

14.6559 
 

20.4919 
 

Acid disturbance 
(Increasing) 

 
6.3639 5.7376 5.5252 5.4580 

Buffer disturbance 
(Increasing) 

0.9972 4.0662 3.9653 3.8684 

Buffer disturbance 
(Decreasing) 

0.4277 Inf Inf Inf 

Method 
Scenario 
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