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Abstract— This paper concerns application of data-derived 

approaches for analyzing and monitoring chemical process 
instruments, extracting product information, and designing 
estimation models for primary process variables, or difficult to 
measure in real-time variables. Modeling of process with an 
optimized classical neural network, the multi-layer perceptron 
(MLP) is discussed. Tennessee Eastman Process, a well-known 
plant wide process benchmark, is applied to validate the 
proposed approach. Investigations and several algorithms as step 
response test, Lipschitz number method and forward selection 
are used. The main advancement introduced here is that a 
hierarchical level responsible strategy is applied for selection of 
input variables and respective efficient time delays to attain the 
highest possible prediction accuracy of the neural network model 
for industrial process identification. 

Index Terms— Multi-Layer Perceptron, soft analyzer, Lipschitz 
number, Tennessee Eastman Process (TEP). 

I. INTRODUCTION 
During the last decade, modern process industries have 

made a lot of efforts to improve product quality, efficiency and 
safety credentials of operation in production plants by 
optimizing operation conditions. This would also be vital from 
economic point of view, for cost management. In this concept, 
efficient monitoring tools for supervising the processes, as well 
as assisting the design of advanced control strategies are 
crucial. Due to the uncertainty and complexity of industrial 
processes, mechanical models are often unavailable. Therefore, 
data-driven empirical models are viable alternatives [1]. 
Besides, despite the wide spread application of hardware 
analyzers, like gas chromatographs, in the industries such as 
chemical industry, they are usually expensive and difficult to 
maintain. Furthermore, the large measurement delay of 
hardware analyzers significantly degrades the corresponding 
control and other automation performance [2, 3]. To address 
this issue, empirical or soft sensor models, designed based on 
process operational data, are used along hardware analyzers to 
produce better estimation of process signals. This control 
scheme is called inferential control [4]. Application of more 
accurate physical sensors with high sample rating in advanced 
controlled processes can improve and assist system stability 
and controllability. The key factor in selecting the proper 

model is that the model must be capable of providing accurate 
predictions for key variables in order to improve process 
controlling signal characteristics. 

Multi-layer perceptron (MLP), as a paradigm in artificial 
neural networks (ANNs), has been of interest as an empirical 
nonlinear model in the past decade [5-7]. In an MLP network, 
regarded as “black-box” model, detailed understanding of 
physicochemical phenomena underlying a process is 
unnecessary for the model development. Input–output 
nonlinear relationships are constructed solely based on historic 
process data and their performance depends on quality and size 
of the data, and structure of the model. The MLP-based soft-
sensor uses logistic transfer functions and the parameters of the 
model (the number of hidden nodes and the connection 
weights) which are calibrated and optimized using a standard 
cross-validation scheme and the Levenberg−Marquardt method 
[8]. 

In this work, the design of a soft sensor for a planet wide 
chemical process is presented. The chemical process 
considered is Tennessee Eastman Process (TEP) was introduce 
in [9] and as a benchmark simulated process plant has been 
widely used for process control research. In most soft sensor 
designs the model structure and proper inputs are selected by 
use of process knowledge [10], otherwise by trial and error or 
exhaustive searches [11], which have uncertain answers and 
time consuming algorithms. Here we have used mathematical 
algorithm and tests in order to provide a comprehensive and 
much certain solution for selecting the most effective 
regressors for industrial soft sensor design. 

On the other hand, most of process industries include huge 
number of I/O signals and employing all values as input 
increases model complexity and may lead to performance 
degradation. Thus, during modeling, input values and effective 
time shifts should be studied for relevancy with output to keep 
the model both simple and accurate. Several methods have 
been used to select the ideal dataset from I/O signals and their 
lagged matrices [12-14]. Lipchitz index is among the most 
accurate methods of delay estimation which, in this paper, is 
applied for input selection. Also, step response strategy is used 
here, along with Lipschitz number to get the optimum feedback 
for our understudy system. 
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The remainder of this paper is organized as follows. In 
section 2 a new optimizing algorithm is introduced to improve 
soft sensor model structure. To have a well-tuned model for 
soft sensor, several techniques were introduced for selection of 
input variables and their respective efficient time delays. In 
section 3 a brief description is made on Tennessee Eastman 
process as considered process in this study. Case studies 
illustrating optimized soft-sensor development for the TEP as a 
chemical process benchmark are reported in section 4. Finally 
section 5 provides concluding remarks. 

 

II. TUNING SOFT SENSOR MODEL STRUCTURE  
It is necessary to judiciously select the effective number of 

time delay for process variables in order to identify the 
considered output. Thus, Lipschitz delay estimation and step 
response algorithm were used in order to understand the proper 
value of the efficient time delay for process manipulated 
variables and setpoints. 

 

A. Step response for delay estimation 
Step response method is an open-loop, time domain 

approximation method. The input, output and noise signals are 
represented in this domain, i.e. in the basis where the basis 
functions are step functions u(t−tp). The efficient delay is 
estimated by measuring the time-delay to the start (the 
beginning of the rising part) of an estimated step response of 
the system. Since this can be done by thresholding these 
responses, these methods are also called thresholding methods 
[12]. 

In this method in order to estimate the most effective delay, 
a step signal with proper high signal-to-noise ratio (SNR) 
should be integrated with the studying signal in normal 
working operation. Step size is determined according to 
process information and step length should be longer than 
process settling time. Afterward, from the slope of the studying 
output response, the efficient time delay that the signal would 
affect studying output would be calculated. I/O dependencies, 
dominant process time constants, process gains, efficient size 
of lag time are obtained through the test which are needed in 
design of the soft sensor model. 

 

B. Lipschitz number for delay estimation 
The Lipschitz numbers method is used to identifying orders 

of input-output models [13, 15]. In [13], the method was 
improved in order to identify the most efficient delay of a 
signal in system identification purpose. Assuming that 
underlying model function f(x) is continuous and smooth and 
that sufficient input-output pairs (xi,yi), (i = 1,2,…, N) are 
available. Then Lipschitz quotient is defined by: 
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2i jx x−  is the Euclidean distance of two points xi and xj 

in the input space and i jy y−  is the distance between their 
corresponding outputs. The superscript n means that, in this 
case, all n significant variable delays are included in x. As f(x) 
is continuous, the Lipschitz condition says, that the Lipschitz 
quotient is bounded.  

In order to reduce the influence of measurement noise, a 
weighted geometric mean of the p largest Lipschitz quotients is 
performed. This results in the so-called Lipschitz number, 
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where ( ) ( )nq k  is the kth largest Lipschitz quotient among 

all ( )n
ijq  calculated for n input variables. The number of 

included quotients is recommended to be set to p∈[0.01N, 
0.02N] [13].  

If the desired delayed variable is excluded from x, the 
Lipschitz number increases considerably. On the other hand, 
including redundant variables will not change the Lipschitz 
number significantly. Therefore to identify the desired most 
significant variable, two steps are taken: 

1. Lipschitz number is calculated while including 
continuous delayed signal to the input set of x. This should be 
continued until there is no other significant decrease in 
Lipschitz numbers while adding more delayed variable to input 
set. 

2. In the next step, conversely, latest delayed variables 
are excluded from the data set and the Lipschitz number trend 
is observed to find a significant increase in its value. 

A special advantage of this method is its independency to 
the output sampling time, as desired most significant delay 
detection is only related to the sampling time of the input 
variable. 

III. TENNESSEE EASTMAN PROCESS 
Tennessee Eastman process (TEP) is designed to be a 

realistic test problem for use in the testing of alternative 
regulatory and optimization strategies in process control. The 
process developed by Eastman Kodak Company in 
collaboration with University of Tennessee and proposed by 
Downs and Vogel [9]. The process model is available in 
Matlab Simulink at Ricker’s homepage [16]. 
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Fig. 1.  Step response test on A: product %G composition and in B: 
product rate setpoint for efficient time delay estimation 

In TEP, there are 41 measured variables (22 variables 
provide continuous process measurements and 19 variables 
record the chemical compositions from gas chromatography) 
and 12 manipulated variables which are listed in TABLE I. The 
details on the process description are well explained in [9]. 
Among all of the 53 process variables, the compressor recycle 
valve, stripper steam valve and agitate speed are not 
manipulated, thus they have excluded in this case study. 

It should be noted that the 22 continuous output variables 
and 12 manipulated variables have the sampling interval of 
1.8sec., while the other 19 composition measurements are 
sampled at the much longer period of 6 min (for reactor feed 
and purge gas analyzer) and 15min (for product analyzer). 
Thus the soft sensor is developed to predict them online. In this 
study, the continuous measurement variables and the 
manipulated variables are used as the inputs while the 
composition variables as outputs for the soft sensor modeling 
and estimation. One of the 19 component variables is selected 
for soft sensor development, which is the %G component in 
product stream. 

TABLE I.  MANIPULATED VARIABLES (XMV), PROCESS SETPOINTS, AND 
CORRESPONDING EFFICIENT TIME DELAYS, CALCULATED BY STEP RESPONSE 
AND LIPSCHITZ NUMBER ALGORITHMS. 

Manipulated 
Variables 

Time Delay (hours) 
Signal Description Step 

Response 
Lipschitz 
number 

XMV (1) 0.5 0.6 D Feed Flow (Stream 2)
XMV (2) 0.5 0.6 E Feed Flow (Stream 3)
XMV (3) 0.5 0.6 A Feed Flow (Stream 1)
XMV (4) 0.5 0.6 Total Feed Flow (Stream 4)
XMV (5) * 0.5 - Compressor Recycle Valve
XMV (6) 0.5 0.5 Purge Valve (Stream 9)

XMV (7) 0.5 0.8 Separator Pot Liquid Flow 
(Stream 10) 

XMV (8) 0.75 0.9 Stripper Liquid Product 
Flow (Stream 11) 

XMV (9) * 0.5 - Stripper Steam Valve

XMV (10) 0.5 0.7 Reactor Cooling Water 
Flow 

XMV (11) 0.5 0.5 Condenser Cooling Water 
Flow 

XMV (12) * 0.5 - Agitator Speed 
Product %G 
composition 

setpoint** 
1 - - 

Product rate 
setpoint** 1 - - 

*as they are fixed in the studying control design, their efficient delay time only could be obtained from 
Step Response algorithm 

**as process setpoint signals change slowly as process structure, their efficient time delay only 
investigated by Step Response algorithm 

IV. THE SOFT SENSOR DESIGN OF THE QUALITY VARIABLE OF 
THE TEP 

A. Efficient time delay estimation 
Efficient time delay has estimated to identify the %G 

component in the product stream. Results from step response 
test and Lipschitz number algorithm are shown in TABLE I. 
With step response method, by exciting the candidate signals 

with proper integrated step signal, time variability and effective 
time delay of the signal can be diagnosed by observing the 
desired output trends. Although this is a simple and efficient 
technique for almost any signal efficient time delay estimation, 
the resolution of the results is affected by the output signal 
sample time. In this experiment, because the output signal has 
0.25-h time, delay is partly estimated with this technique. 

Results of the step response test for two process setpoint 
signals are depicted in Fig 1 as an example of this study. A 
visual inspection is performed in order to estimate the effective 
time delay for every candidate process signal. 

In the next method, Lipschitz algorithm solves the problem 
with numerical solution. Therefore here data needs to be rich 
enough to express the process behavior and training data is 
used in this algorithm. Some variables are fixed to their 
boundaries or have little changes, so this technique cannot be 
used for their delay estimation. For others, improvement in 
efficient time delay estimation resolution is observed in the 
results of TABLE I. 
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Fig. 2.  Lipschitz number test on two Tennessee Eastman 

Process manipulated variables, A: XMV1 and B: XMV2 
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Fig. 3.  Physical sensor and soft sensor response for validation 
data, B: is a closer look at the response – Blue line is 
physical sensor output, Green line is the soft sensor 
output, red dots are the soft sensor output in the physical 
sensor availability time 

Lipschitz number test result on two process manipulated 
variable is brought here as an example in Fig. 2. It can be seen 
that while the efficient time delay is excluded from the variable 
set in the algorithm, the Lipschitz number would face a 
significant change in its value. In this figure, two Lipschitz 
number tests were plotted for each signal. One with maximum 
method (labeled with LI-Max) and the other with average 
method (labeled with LI-Av) to overcome the process noise. 
Horizontal axis is with 0.01 hour unit. 0.6-h is estimated for the 
efficient delay of both signals. 

Although step response is a simple open loop test to 
understand the efficient time delay, but it’s not possible for 
most closed loop process to perform this test on manipulated 
variables in their operation. Results are highly related to visual 
inspection of the operator to recognize the most efficient time 
delay for every candidate signal. Therefore Lipschitz is a 
powerful technique for this problem and can response with 
high precision while only needs training data which are 
available for most cases. 

B. Input selection for soft sensor model 
The input dataset of the proposed soft sensor model are the 

eight TEP variables with their proper delay time listed in 
TABLE I: four process input flow XMV1-4, XMV6 purge 
valve position, XMV7 separator pot liquid flow, product %G 
component setpoint and product flow rate setpoint. This input 
selection is made by conducting forward selection (FS) 
algorithm [8], input selection algorithm, and analysis of the 
process control structure while selecting most effective signals 

among the manipulated variables and process setpoints with 
their calculated effective delay. 

C. Training phase 
Nonlinear model with one layer MLP structure is used in 

order to estimate the desired analyzer output. An optimal 23 
hidden neuron number (HNN) has selected by semi cross 
validation technique [8], in which model response accuracy is 
investigated for validation data set which is non-trained part of 
process dataset.  

During training phase, the weights and biases of the 
network are iteratively adjusted to minimize the MSE, the 
average squared error between the network outputs and the 
target outputs. The Levenberg - Marquardt (LM) algorithm, a 
well-known training algorithm for its fast convergence and 
small residual training error [8], is employed in this work. 

Model has been trained by 168h process operation and 
0.01h sample rate for data generation. Here the process is 
operating under the base case operating mode while a proper 
pseudo random binary sequence (PRBS) signal is introduced to 
the process in order to have full exciting dataset for 
identification purpose [17]. 
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Fig. 4.  4-plot diagram for evaluating model performance in 
training phase 

The result is shown in Figure 3-A, where the physical 
sensor output has estimated by soft sensor model with 
validation data. Here physical sensor output signal and soft 
sensor output is shown in the same diagram. Soft sensor error 
is calculated every 0.25-h which physical sensor data is 
available. In Figure 3-B, a closer look is made at the soft sensor 
response and its value is clarified by dots at the time physical 
sensor output is available.  

In addition, a 4-plot validation figure [18] is used in order 
to validate soft sensor model performance in training phase and 
model response error characteristics have been investigated. 
Result of this investigation is shown in Figure 4, where error 
time response, lag, histogram and normal probability plots are 
visually monitored. It can be seen that all of the residual 
characteristics are similar to Gaussian noise characteristics, 
which means the model response error is the process noise and 
this model could have a good estimation of desired process 
output and eliminating the analyzer noise signal. 

V. CONCLUSION 
In this study a soft sensor is designed to overcome the 

process instrumental limitation made by analyzers in chemical 
process industry. In order to design such inferential instrument, 
a nonlinear artificial neural network, MLP, is used as soft 
sensor model. Several investigations made in order to introduce 
a novel improvement in model structure optimization. 
Therefore step response technique, Lipschitz number method 
and forward selection was applied in this study. Results show 
that the real-time inferential analyzer can be a good alternative 
for the former physical analyzer while significant improvement 
achieved in soft sensor response as it has optimized in the 
training phase. We showed that the designed soft sensor can 
perfectly estimate physical analyzer output and truly overcome 
with its output noise signal. 
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